

A 6U HYBRID PROPULSION MODULE FOR CUBESATS

Ashley Karp, Elizabeth Jens, Jason Rabinovitch and Barry Nakazono Jet Propulsion Laboratory, California Institute of Technology

JANNAF Propulsion 2018 21 May 2018

Agenda

- Introduction
- 6U Propulsion Design
- Test Setup
- Results
- Future Work
- Conclusion

Introduction

- A 6U propulsion system is proposed to enable substantial propulsive capability for up to 25 kg of wet mass
 - This study is the result of a JPL internally funded research and technology development program.
 - 6U is defined as 36.6 cm by 23.9 cm by 11.6 cm
- Potential applications of this small-scale hybrid system include orbit insertion, change of orbit, breaking burns, flybys, and deorbit burns.
 - The hybrid is especially advantageous for these larger/longer burns because of its increased thrust compared to typical monopropellant systems.
- Hybrid fuel regression rate for combustion of PMMA/Gox was found to be different than literature.

$$\dot{r} = a_o G_{ox}^n$$

What is a hybrid?

Payload (non-prop dry mass) and ∆V are presented

Total Spacecraft Mass (Wet)	15 kg	20 kg	25 kg
Payload (Available Non-prop Mass)	3.4 kg	8.35 kg	13.36 kg
ΔV	540 m/s	400 m/s	315 m/s

- Propulsion system dry mass of 8.33 kg
 - Components: 5.67 kg of components (including margin)
 - Primary structure: 15% of the spacecraft wet mass
 - Secondary structure, thermal and cabling: 25% of wet mass
 - AIAA S-120 margins are applied to all estimated masses
 - The propulsion system is self-contained except for the avionics and battery which are shared with the main system to reduce mass.

- A single motor with two high pressure oxidizer tanks (10,000 psi)
 - This is considered to be low risk since oxygen containment and handling at 10ksi has flight heritage. An example is the spare oxygen tanks Apollo astronauts carried for emergencies
- Oxygen cold gas systems
 - TVC: four 1.1 N thrusters (2% of useful propellant)
 - RCS: eight 0.05 N thrusters (158 grams)
- Assumes a 28 V power supply. Operation at decreased voltage is possible for a small mass penalty

Ambient pressure test setup

- Approximately 30 tests with this propellant combination have been carried out from 1 to 95 s in duration.
- Objectives:
 - Regression rate coefficients
 - Multiple restart capability
 - Fuel utilization
 - High performance

Regression Rate

- JPL experimentally derived regression rate coefficients found to be different than previously published values.
 - Fuel regression is faster, enables a single motor to fit within the CubeSat form factor.
 - Chemical composition of PMMA can vary (C₅O₂H₈)_n.
 - Tests carried out for PMMA from two different vendors

$$\dot{r} = a_o G_{ox}^n$$

	a_0	n	
JPL	9.40 x 10 ⁻⁵	n = 0.34	
Zilliac and Karabeyoglu ¹	2.11 x 10 ⁻⁵	n = 0.615	

¹Zilliac, G. and Karabeyoglu, M., *Hybrid Rocket Fuel Regression Rate Data and Modeling,* 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences, American Institute of Aeronautics and Astronautics, July 2006.

Multiple Starts

- Five ignitions have been demonstrated autonomously on a single motor. This has now been confirmed through two separate tests
 - Each start is stable and repeatable
 - This is not a limit, but the current goal for demonstration

Multiple Starts (Test 74)

Fuel Utilization

- Two near full duration tests have been completed to date.
 - The first was 95 s and achieved 94.3% fuel utilization
 - A second test of 95 seconds,
 spilt up between 5 burns,
 achieved 97.5% fuel utilization.
- All fuel remaining was at the front of the combustion chamber
- The injector was modified between the two tests in order to allow the oxidizer to more completely mix with the fuel. Further refinement is necessary.

JPL Hybrid Facility: Test 73

Specific Impulse

- Design Isp: 311 s
 - Requires an efficiency of 93%, (equilibrium combustion and includes O/F shift loss of ~1%)
 - Ideal vacuum Isp is 334.5 s (O/F 1.6)
 - O/F shift is shown at the right. The mean ideal Isp during the burn is 332.1 s
- Testing at JPL has demonstrated combustion efficiencies in the range of 80-95%
 - Validated the design assumption

	l le de et d	State of the Art: Monopropellant			
	Hybrid (PMMA/GOx)	Hydrazine	HAN 10% water (AF-M315)	ADN (LMP-103S)	
Available Non-Propulsion Mass/ Payload	16.67				
Main Advantage	High Isp/Thrust	TRL	Higher Density than hydrazine		
Isp (Performance)	311 s	227 s	213 s	233 s	
Thrust [N]	50	21	20	20	
Delta V for 12U, 25 kg	315	148	61	89	
Prop System % Volume	67.8% of 6U	71.5% of 6U	74.8% of 6U	66.1% of 6U	
Cold Survival Temperature [C] (5 C margin)	~-150	8	-75	-85*	
Toxicity/Issues	Nontoxic	Toxic	Acidic, titanium components only	Similar to Ammonia, Precipitate is 1.4 explosive	
Single Burn Impulse [Ns] (e.g. 1 hr Ol burn)	5,050	2,520	4,950	2,640	

Future Work

- Vacuum testing
 - Raise TRL from 4 to 5(+)
- Subsystem level testing
 - The main oxidizer valve will be tested this year (TRL 5+)
 - Other system level components will be tested in the future, but do not have such a direct impact on the performance of the system.
 - The development of high pressure, miniature, oxygen compatible components will be required.
- Complete system development will take ~2.5 years with adequate funding.
 - The high-pressure components will drive the cost and schedule of this system. However, they also enable the high performance in the small propulsion module

Conclusions

- A 6U hybrid propulsion module for CubeSats has been presented.
- Depending on the mass of the rest of the system, the propulsion module, taking up 6U and 1/3 of the spacecraft mass, can provide 315 m/s of ΔV.
 - Up to about 540 m/s is possible.
 - This is a substantial improvement over the state of the art.
- Test data confirm the performance of the PMMA/GOx motor as well as the high-level requirements for the system: multiple starts and reasonable fuel utilization.
- The TRL of the propulsion system is currently 4 and is expected to be increased to 5+ by the end of Sept 2018.

Questions?

Contact: Ashley.C.Karp@jpl.nasa.gov

